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General Analytical Solutions of Static Green'’s
Functions for Shielded and Open
Arbitrarily Multilayered Media

Keren Li, Member, IEEE Kazuhiko Atsuki,Member, IEEEand Tsuyoshi Hasegaw8tudent Member, IEEE

Abstract—In this paper, we present for the first time general
analytical solutions of the static Green’s functions for shielded
and open arbitrarily multilayered media. The analytical formulas
for the static Green’s functions, which are expressed in the form
of the Fourier series or the Fourier integrals, have simple form L
and are applicable to arbitrary number of the dielectric layers. }M
The derivation of the formulas is primarily based on a technique i
by which a recurrence relation betweenL layers and L + 1 layers
is developed. Green’s functions for a three-layered dielectric
structure are given as an example of the general formulas. These
general analytical solutions will provide a new and efficient tool
to the analysis of the multilayered medium structures.
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I. INTRODUCTION

O FIND a Green’s function is the first and the most
important step in solving the integral equations formu-
lated by the boundary integral equation techniques such ¢
the boundary element method (BEM) [1]-[4] or the partial-
boundary element methody-BEM) [5] and the spectral-
domain approach (SDA) [6]-[10]. For free space or for an |__ a |
unbounded homogenous space, the Green'’s function is easily
obtained and is of a simple closed form for both static arfd@- 1. A 2-D multilayered medium structure shielded with conductor walls.
time-harmonic fields. However, quite often in practice it is
almost as difficult to find a solution for the Green’s functiomayered media the Green’s function is of a form of double or
as it is to solve the original boundary-value problem. multi-infinite summations, which may make the computation
Fig. 1 shows a two-dimensional (2-D) multilayered mediumery complicated and inefficient [12]. On the other hand,
structure shielded with rectangular conductor walls. The mwlith the Fourier series expanded in the spectral domain, the
tilayered medium structure has been recently developed drmmblrier series is only one infinite summation regardless of the
introduced in many microwave circuits, especially in monaiumber of the dielectric layers. To determine such Green's
lithic microwave integrated circuits (MMIC's), to providefunction for the structure shown in Fig, 1, incorporating all
high-cost performance as commercial products [11]. The effioundary conditions on the interfaces of the dielectric layers
cient analysis of such multilayered medium structures usuaipd on the grounded conductor walls, it is necessary to
requires Green'’s functions incorporating partially or all theelate the Fourier coefficients in each layer to the boundary
boundary conditions in the multilayered structures [3]-[10tonditions. When the number of dielectric layers is large (for
Such Green'’s functions, however, are no longer easy to obtaimample, more than four layers) this procedure is exhaustive
One of the most conventional Green’s function for thevork. For such structures with large number of layers, there
structure shown in Fig. 1 is given in the summation of eadh an effective technique to derive the Fourier series in
Green’s function created by the image charges in the malh semiautomatic procedure, where the dielectric layer is
tilayered media. The other is expanded in the Fourier semulated to a transverse transmission line and then the
ries, i.e., in spectral domain [1]. For a one-layered dielectricansmission line theory can be employed to relate the Fourier
structure, the Green’s function is expressed as an infiniteefficients between two adjacent dielectric layers [7], [8],
summation over image charges, whereas for two or mddsS], [14]. However, even with this procedure the obtained
Green’s function is usually not given by a final expression
Manuscript received August 1, 1994; revised September 23, 1996.  for the arbitrary number of layers, so that it must be derived
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shown in Fig. 1, the Fourier coefficients must be calculated vy

for each Fourier term—not analytically, but numerically—as T &1 e i-th boundary

is the Green’s function. For this reason, there is a need to #; N
develop an analytical Green’s function for the multilayered e G.(x. y)

medium structure. Furthermore, an analytical expression for ! i x Y
the Green’s function to be found may help us to treat the
singularity occurred in the Green’s function and its boundary @)
integrals and to improve the convergence of the Green's
function in numerical calculation.

In this paper, first we give a general analytical solution
of the static Green'’s function for the shielded structure with
multilayered media (as shown in Fig. 1), and then we give Gyj(x, y)
the detail derivation. The general analytical formula for the
Green’s function is expressed in the Fourier series or the
Fourier integrals (Sections Il and IV). The formula has simple (b)
form and is applicable to an arbitrary number of multilayers.
The derivation of the formula is primarily based on a technique
by which a recurrence relation betweénlayers andL + 1 h,
layers is developed. The details of the derivation are described
in Section lll. The analytical Green’s function for an open

multilayered media is also derived and given in Section IV.
Green’s functions for a three-layered dielectric structure are
provided in Section V as an example of the general formula.
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II. ANALYTICAL GREENS FUNCTIONS FOR AN ARBITRARILY
MULTILAYERED MEDIA WITH SHIELDED CONDUCTOR WALLS h; S

As illustrated in Fig. 1, the arbitrarily multilayered medium . (x,9) G__+(x’ y)
structure consists of. isotropic dielectric layers with elec- D 7
tric parameters;(: = 1,2,---, L) and perfectly conducting % T '(; ;)_ B
shielded conductor walls. The source point and the observation & G;(x,y) 70
point are placed igith andith layer and denoted bfo, o) 0 a x
and (z,y), respectively. The source is a line charge for the %)

2-D problem. Coordinate systems for analySlS are builtin eajglrg]j. 2. Local coordinates and Green’s functions in different layers. (a) Local

local layer, as ShOW.n in Fig. 2(a), for CQnVenience of analySigordinates forith layer. (b) Green's function in the first layer. (c) Green's
Hence, theyy andy in such local coordinate systems shoulélinction in the last layer. (d) Green’s function jith layer where the line

have the values in the regidn< yo < h; and0 < y < h;, CNarge source exists at poifito, o).
respectively. In this paper, we define a layer as “the source

layer” when the line charge exists in that layer or as “the The Green’s function given in (3) at arbitrary observation
nonsource layer” otherwise. point and source point in arbitrary layer can be derived

For an electrostatic problem or an analysis under the quagialytically and given by following formula:
TEM wave approximation, the Green'’s function under con-

sideration, as shown in Fig. 2(a), satisfies following Laplace © 4
equation and Poisson equation [1], [2]: Gij(x,y|zo, o) = Z — sin a,x sin apzo
ap
VQGU (.’L’, y|$07 yO) = 07 1 7& J (1) n=l Lo _ P
) 1 A (hi = 7)AL (To),
\% Gu(a:,y|$o,yo)I—E—é(a:—xo,y—yo) (2) i 1> OrL_:J7yZyO (4)
! . An | A @AY (hy — o),
whereV? = 9% /922 + 82 /9y? is a Laplacian operator. i<jori=jy<uyo
Setting the potentials on the shielded conductor walls at zero
volt, the Green'’s functions ifth layer can be expressed in th?/vhere
form of Fourier series as
G, y[%0, yo) e =anhe,  k=1,2,L (52)
= Z(Agf) cosh oy + B sinh i y) sin oz (3) ¥=any, Yo = Yo (5b)
n=1 An :A(hl,hg,"',hL) (Ga)
whereq,, = nr/a,n = 1,2, -+, 00 and A and B are the A;f@) =A(0,0,- -7, higs,- -+ he) (6b)
unknown Fourier coefficients for thih layer. A (g) =A(hy, he, oo+ hi—1,7,0,---,0) (6¢)
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and A(zy, z2, -+, z1) iS @ generating function given by where
L -1 1 [0} 1 1 sinhhg
1 15] 15] Fo=— and FL = — = (14)
A2y, 29, ., 27) = - — e — e |1 e | —coshh
(21,22, ++,2L) H - H <5k or +Era1 32k+1> 1 L L

zi andC;; andC;t in (13) are two unknown coefficients for the

) H sinh 7 7) first and last layers, i.e., the bottom and top layers.
Substituting (13) and (14) into (9), we can get the relation

equation between the Fourier coefficients fir layer in (3)

To use this general formula, there is a simple rule by whicind the unknown coefficients; and C;t for the bottom and

wheny > o, we select the function with thet” sign for the top layers as follows:

observation poiny and its argument of the function &, — %) @) @)

and the function for the source poigg is with the “—" sign |:An:| —Frot or |:An:| —F-C- (15

and its argument is only; wheny, > y, we only need B, con B, o

0 exc_hanguezio and“y :amd the corresponding layer number, o o o matricegt and F~ are defined as follows:

The signs 4" and “—" correspond to the relative height of v ¢

the observation point and of the source point; the higher uses L at 1
“4+,” and the lower uses-." Ff=1]F" = {bi} (16a)

The details of the derivation of this general analytical k=i B0
solution will be given below. f =19
Fy=]]Fr= {bz} . (16b)

— n 1
lIl. DERIVATION OF THE ANALYTICAL GREEN'S = @

FUNCTIONS FOR THESHIELDED MULTILAYERED MEDIA The coefficientsa;t, bt, a;, and b7 in above equations are
introduced for convenience of the later derivation.

A. Expressions for the Fourier Coefficients o
) . B. Green’s Function in the Source Layer
Applying the boundary conditions on the upper boundary

of ith layer, as shown in Fig. 2(a), to the Green’s function in In the source layer, the Green’s function satisfies Poisson’s

(3), we have equation (2). However, after dividing the layer into two regions
by adding a boundary ay = ., as shown in Fig. 2(d),
Gijly=n; = Git1,5]y=0 the Green’s functions in the two regions then satisfy Laplace
e, u( — Gy, onith boundary (8) equations and can be expanded as two Fourier series, similar
O |y, 9 y=0 to the series shown in (3) as

From these two equations we get a relation equation between ij(x,yuo,yo)
the two sets of Fourier coefficients as follows:

|:An } (i+1) . |:An } () = T;(Aff cosh i,y + BiE sinh o, ) sin a2

Bl B v # %o (17)
A, @) A, (@+1) where the plu§ and minus_sign_s are respondin_g to the upper
B, =F; B, (9)  and lower regions shown in Fig. 2(d), respectively, and the

Fourier coefficients in (17) can be found from the (16) and
where the coefficient matrix in above equation is given by given by

1 [ej41coshh; e;41sinhh; | Arjf + arjf +
_ gk e =FCr = C=. 18
i €it1 [ g; sinh h; gicoshh; | (10) Bf zon 7 (18)
and the inverse matrix is Note that the superscrip{4.), (7) and subscript§;), (1) of the
1 W T coefficientsa;’, b, a,;, andb,, are omitted in above equation
ol o | GiCOSN  —Ep SR, (11) for simplicity of expression.
v g |—€isinhh;  e;41 coshh, |

To find the coefficients”; andC;t in (18), let us consider

The symbols with over bar in above matrices are defined in ()& boundary conditions at = y,, which are given by
Re_ferring to the expression in (3_), th_e Green'’s functions in G—'l—j|y=yo _G;j|y=y0 (19a)

the first and last layers, as shown in Fig. 2(b) and 2(c), are

oGt oGy,
Gijn xsinhany and Gpj, xsinho,(hr —y). (12) —& dy - dy =6(x — zo). (19b)
Y=Yo
Therefore, we can define that Substituting (17) and (18) into (19) gives solutions
1) (L)
An . An _ AT
[ Bn} =F,C7;, and [ Bn} =F'ct (13 cF = A—nls" (20)
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where then, from (26) and (27), we get
AFE (yo) = aF cosh avyo + b sinh av o (21) at (L+1) 1 di —diz | g1 el
1 /2 r¢ ) 2 b Cepg1|—dar  dx e
Sp=—| = 6(x — o) sinapx | = — sinapxo
Qp \ @ Jo UnQ <5L 9 +enay a )CLL+
(22) ohr, T Ohpi) "
A, =¢;(atby —a;bl). (23) _ 1 ssinhhp g1
, . . €L+1 — +e¢ L+
Then we have the Green’s functions in the source layer as Lon, M Ohr1/) "
follows: -sinh Ary1
G7(z, yl7o, v0) Then, from (28), we have
oo :|: F
Z 2 A—A(yo) Sin @, T Sin o, Tg. (24) iATLfH = L< €L 8_ +ep1—— 9 )
oy JAVS € EL+1 Shr, 8hL+1
(kb —a bEFysinhhryy.  (29)
C. Derivation of the Generating Functiofr(z;, z2, -+, 21.)

Relating (25) to this equation gives a recurrence relation

To derive an analytical Green’s function for arbitrary numbetweenAL+1 and AL as

ber of layers, let us rewrite thé&, in (23) for the case of
L layers as

)Aﬁ sinhhrq.
(30)

A= ——(ag v
AL = ej(al*b; — agbEY) (25) eret\ "Ry ohpn

where, from (16a), we have _ i
Since for the structure with only one layer we have

ar 1™ o (5 ) 1] sinhAg N

we can then get a generating formula from the recurrent (30)
The subscripts in above two equations are omitted for S"ﬂ)r AL as

plicity.
Letting - L _
AL = H H <5k — gy —— 0 ) - [[ sinb 7.
L—-1 1 €k bl 8hk+1 o
1 H il = | o —di2 (26) k=1 = k=1
€L\ iy b —do1  d (31)
Using a set of generalized symbelg &k = 1,2,---, L,we can
we have rewrite the generating formula as shown in (7) and have
at 1P diysinh bz, + dip coshhp Fi— gt — — —
A - UL - L Ay = e;(atbs — asbt) = Ao, B, -+ hp). (32
{bg} {—(d21 sinh Az + da cosh hL)} @7) Silonbn = anbi) = Alha, hay oo hr). - (32)

In this paper, the functiol\(z1, 22, - -, z1) defined in (7)
is called the generating function. This function is independent
on where the source layer and the observation layer,jile.,
and:th layers exist since we have never specified these layers

Now, we consider the case &f+ 1 layers. The(L + 1)th
layer is added on the top of thkth layer. Obviously, from
(23) we have

ALFL = gj(aglL'i'l)'i'b; _ a;bﬁf*l)*) (28) in above derivation procedure.
and from (16a) D. Derivation of the Analytical Green’s Functions
(L+1) L4l in an Arbitrary Layer
{bﬂ = H F In this section, we try to express the functions', (y)
k=j and A7, (yo) defined in (21) in a more sophisticated way

and relate these two functions to the generating function
HFk 'ELFil'EL—i—lFZil- A(zl,ZQ,---,ZL).
In the Source Layei = j: We rewrite A}, (y) from (21)
and (16a) as follows:

5L+1 EL

Since
eLFpt - Fri + at
by enpbgy L AT (y) =[cosh7,sinh7] Lﬂ_ } (33)
ercoshhrsinhhyy; (1) .
_ +er+1sinhhy coshhpiq [a*’ } _1 [ gjcoshh;  —ejqysinhh; } {aj;}
" |—(egsinhhpsinhhpyg bt Gy &ilTE sinhh; ejp1coshh; | |bF G+1)

+eryicoshhpcoshhryr) (34)
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then substituting (34) into (33) gives

i J " . L |
1 _
At(y) = _lej cosh(h; - ) & :
J
L —a|af : i
—ejpsinh(y -9 | . @) F :
"4+ [
Referring this expression to (34) again, we discover that g * L&) ;;‘
Adi () = alt (hy = ) = af (hj = 7). (36) . :
Note that the superscripts in above equations are omitted for W +
. .. e charnpe
simplicity. TR e T % Y A
On the other hand, letting E (. Yo ‘i!J
h_k:07 k:1727"'7j_1 # *_
: :
and substituting these terms into (10) gives
/ 1 fepps O E, h,
Fk = Jgezpce 5 ; 5 2 *
ep+1| O €k
then Fig. 3. An open multilayered medium structure.
T T 110 . .
- | = H Fy_,= = |1l Using the symmetry of the Green’s functiér< j and com-
" k=j ! bining the expression in (40), we can then unify the Green’s
Therefore, from (23), we have functions at arbitrary observation point and source point in

- — arbitrary layer as the formula given in (4).
A(0,0,' "7hj7hj+17 t '7hL)

=e;(afb —a bh) = at(hy). (37) IV. ANALYTICAL GREEN'S FUNCTIONS

FOR AN OPEN MULTILAYERED MEDIA

Then, obviously, we can get
n - — In an open structure as illustrated in Fig. 3, the Green’s
An(y) = A0,0,-- by =G jas -+ ). (38)  function [as that in (3)] can be expressed in the form of Fourier

Similarly, we can getA~, (yo) as follows: integral and given by

Anl(yo) :A(h17h27'"7hj—17y070)7"'70)' (39) Gij($7y|$07y0) :2i/ (A(Z) COSh’yy—i-B(Z) Slnh’}/y)
m

— o0

By defining two functions given in (6) for generality and

. —jvzx) dy. 42
using the symmetry of the Green’s function, we can rewrite exp(=jrz) dy (42)
the Green’s function in (24) as follows: Similarly to the shielded structure, we have no difficulty in
finding that
ij($7y|$07y0) 9
= Z i Sin q, x sin au, g §= ; exp(jyTo) (43)
n=1 n@
2 AZ*(E—Q)%‘(%), ¥ >y (40) as s_hown in (22), and the Green’s function can then be
A\ AT@AF (R~ ), v < wo. rewriten as
+oo
In the Nonsource Layeir# j: Here, we can only consider Gij(z,y|zo, yo) = i/ iéij('%y, o)
the case > j for the symmetry of the Green’s function. When 27 o 2V
i> j, the Fourier coefficients in ith layer are given by -exp[—jvy(z — x0)] dvy (44)
A, @ _prot — pt A at (L) AT 41 Whereéi]’(’}/,y, Yo)is a spectral kernel function of the Green’s
B,| TUitn THIN T g @ N (D) function in y direction. TheG,;(v,¥,%0) can be obtained
o o as an extension of the shielded structure by taking limits as
Similarly to the caseé = j, we have a — oo,nr/a — v in (4) and given by
(4) (4) g ~ 5
(A, cosh i,y + B, sinh o, ) e G, w0) = Gij (7, 76)
= (a%F cosh + b'F sinh a,, ) An(#0) S A" (h; = 9)A (7o),
R . An :3 ] 'i>j9ri_=j,y2yo (45)
_ AV —9A (@) A A @AI* (R —T),

A, ™ r<jori=j,y <o
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y A3 (@) = Alanh, anha, any) (50b)
] A (g) = i [e3 sinh cv,y cosh ai hi3
______________ ' " + &5 cosh av, y sinh ay, hig) (51a)
hs AZ(g) = % [e2 sinh a,, by cosh v,y
1€2
+ &1 cosh av, by sinh o,y (51b)
hy AT (@) = Aany, anhz, anhs) (52a)
| | ¥ AL~ (7) = = sinh a,y (52b)
™= o L | £1

Fig. 4. A three-layered dielectric structure shielded with conductor walls.and the Green’s functions for each Iayer are then given as

Gs3(z,y|70,%0)

where = g
hi =7hy, k=1,2,---,L (46a) - z:la—nasmo‘"mmo‘"xo
T=7Y Yo ="7Y% (46b) n_g 34 (T _ o\ A3 (1
A=A Tn n 47 L2 Ag_(ﬁ?: 3y)én (@)7 Y 2 Yo (53a)
) - ( L2ttt L) . ( a) An An (y)An+(h3_y0)7 yS?JO

AH’(@) :A(0,0,"',y, hi+17"'7hL) (47b) G32($7y|$07y0)

AZ_(?) :A(hlvh%"'vhi—byv 0770) (470) i 1 . . 2A%+(h—3—y)A%_(%)
. . . = Z —— SIN (R TSI G T *

Note the similarity between the formula in (4) and that in ey Yn@ A
(45). These two formulas have almost the same form except (53b)
of the difference of the summation and the integration.

. ) . - Gai(z,ylTo, vo)

To simulate the true open structure in the vertical direction oo BT oA L
for both shielded and open structures, we can take the top — Z isinana: sin o, o - 28,7 (hs —)A,~ ()
layer to have infinite thickness. Taking the thickness of the oy And A
top layer to be infinite yields two infinite hyperbolic sine or (53c)
cosine functions for the layer that occur in the nominator ang;n(aj yl20,v0)
denominator of the Green’s function at the same time, hence, """ 7"
cancelling the infinite exponential part of each other; therefore,  _ Z 1 sin v, sin oy, o
this operation does not bring any difficulty in calculation. ey Yn@

Similarly, the bottom layer can be also taken to be infinite, but 2 [ A2+ (hy — 7)AZ (70) >
L, e n _2 Y)_y gga Y Z Y (54a)
at least one of the top or the bottom layers must not be infinite A LA @A (ha —70), ¥ < o

because the potential in the 2-D problem needs a referen

potential or a ground at a finite distance. €21, yl0,90)

1 . 207+ (he — 9)AL (0)
= Z —— SIN p, & SIN X T *
V. GREEN'S FUNCTIONS FOR A 1 Qnd Ay
THREE-LAYERED DIELECTRIC STRUCTURE (54b)
For a three-layered dielectric structure, as shown in Fig. 43, (z, y|zo, 10)
here we derive its Green’s functions as an example of the =
application of the general analytical formula in (4). = —— sin qpx sin apxg
Letting L = 3 into (4)—(7), we have the generating formula —
as . i{ A (hy = )A@0), ¥ 2 o (55)
A LA @AF (i =T0): v < o

A2y, 20,73) = [e2€2 sinh 21 sinh zo sinh z3

€1€2€3

. The remaining Green’s functions can be found from the
+ e9e3 sinh 71 cosh 25 cosh 23

symmetry of the Green’s function and given by
+ e3e1 cosh 21 sinh 25 cosh 23

+ €162 cosh 71 cosh 22 sinh 23] (48) Gas(@, ylro, yo) = Gaa(2o, Yol y) (562)
Gr2(z, y|z0,Y0) = G21(w0, yo|z, ¥) (56b)
and then
Gi3(z, yl|zo, yo) = Ga1(zo, yolz, y)- (56¢)
An == A(Oénhl, Oénhg, Oénhg) (49)

_ _ . L These Green’s functions for a three-layered dielectric struc-
Placing the observation point and source point into each laygfe are the same as those functions available in many pub-
alternately gives lished papers and books, for example, in [5], [13], and [14].

1 . . . e . _
AP (5) = = sinh any (50a) This example also provides a direct verification of the correct
ness of the general formulas.
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VI.

We have derived the general analytical solutions of the
static Green’s functions for shielded and open arbitraril
multilayered medium structures. The Green’s functions f Tt
a three-layered dielectric structure are also provided as an
example of the application of the general expressions. Wl
can say that these general analytical formulas will end the
history of the exhaustive derivation of the Green’s functioi3]
for the multilayered medium structures. One obvious mer'#
of these formulas is that they are given finally in analytic; ]
expressions and the expressions are true for arbitrary number
of layers. Being analytical and applicable to arbitrary numb?IS]
of layers will be very helpful to develop efficient calculation
techniques of the Green'’s function based on those expressions,
for example, to extract the singular part from the Green'd®
function, to introduce an approximate formula that may be
more suitable to the numerical computation, and to develop
a general computation program for an arbitrarily multilayered
medium structure. On the other hand, applying the Green’s
functions to thep-BEM will give an effective technique for
the analysis of the multilayered medium structures, whic
may include arbitrary cross-sectional dielectric substrates &
strip conductors [5]. Furthermore, using the concept of tt
complex image charges will greatly improve the convergen
of the Green’s functions expressed in the Fourier integral [1¢

CONCLUSION [10]

solutions for three-dimensional static Green’s functions, sin
the derivation procedure after expanding the Green’s functi
in a 2-D plane is completely the same as that given in t

[16]. These analytical formulas are able to be extended to t IL I
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