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Abstract—In this paper, we present for the first time general
analytical solutions of the static Green’s functions for shielded
and open arbitrarily multilayered media. The analytical formulas
for the static Green’s functions, which are expressed in the form
of the Fourier series or the Fourier integrals, have simple form
and are applicable to arbitrary number of the dielectric layers.
The derivation of the formulas is primarily based on a technique
by which a recurrence relation betweenL layers andL+1 layers
is developed. Green’s functions for a three-layered dielectric
structure are given as an example of the general formulas. These
general analytical solutions will provide a new and efficient tool
to the analysis of the multilayered medium structures.

I. INTRODUCTION

TO FIND a Green’s function is the first and the most
important step in solving the integral equations formu-

lated by the boundary integral equation techniques such as
the boundary element method (BEM) [1]–[4] or the partial-
boundary element method (-BEM) [5] and the spectral-
domain approach (SDA) [6]–[10]. For free space or for an
unbounded homogenous space, the Green’s function is easily
obtained and is of a simple closed form for both static and
time-harmonic fields. However, quite often in practice it is
almost as difficult to find a solution for the Green’s function
as it is to solve the original boundary-value problem.

Fig. 1 shows a two-dimensional (2-D) multilayered medium
structure shielded with rectangular conductor walls. The mul-
tilayered medium structure has been recently developed and
introduced in many microwave circuits, especially in mono-
lithic microwave integrated circuits (MMIC’s), to provide
high-cost performance as commercial products [11]. The effi-
cient analysis of such multilayered medium structures usually
requires Green’s functions incorporating partially or all the
boundary conditions in the multilayered structures [3]–[10].
Such Green’s functions, however, are no longer easy to obtain.

One of the most conventional Green’s function for the
structure shown in Fig. 1 is given in the summation of each
Green’s function created by the image charges in the mul-
tilayered media. The other is expanded in the Fourier se-
ries, i.e., in spectral domain [1]. For a one-layered dielectric
structure, the Green’s function is expressed as an infinite
summation over image charges, whereas for two or more
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Fig. 1. A 2-D multilayered medium structure shielded with conductor walls.

layered media the Green’s function is of a form of double or
multi-infinite summations, which may make the computation
very complicated and inefficient [12]. On the other hand,
with the Fourier series expanded in the spectral domain, the
Fourier series is only one infinite summation regardless of the
number of the dielectric layers. To determine such Green’s
function for the structure shown in Fig, 1, incorporating all
boundary conditions on the interfaces of the dielectric layers
and on the grounded conductor walls, it is necessary to
relate the Fourier coefficients in each layer to the boundary
conditions. When the number of dielectric layers is large (for
example, more than four layers) this procedure is exhaustive
work. For such structures with large number of layers, there
is an effective technique to derive the Fourier series in
an semiautomatic procedure, where the dielectric layer is
simulated to a transverse transmission line and then the
transmission line theory can be employed to relate the Fourier
coefficients between two adjacent dielectric layers [7], [8],
[13], [14]. However, even with this procedure the obtained
Green’s function is usually not given by a final expression
for the arbitrary number of layers, so that it must be derived
each time for a given number of layers. This may take a lot
of derivation time. Especially, for the shielded structure as
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shown in Fig. 1, the Fourier coefficients must be calculated
for each Fourier term—not analytically, but numerically—as
is the Green’s function. For this reason, there is a need to
develop an analytical Green’s function for the multilayered
medium structure. Furthermore, an analytical expression for
the Green’s function to be found may help us to treat the
singularity occurred in the Green’s function and its boundary
integrals and to improve the convergence of the Green’s
function in numerical calculation.

In this paper, first we give a general analytical solution
of the static Green’s function for the shielded structure with
multilayered media (as shown in Fig. 1), and then we give
the detail derivation. The general analytical formula for the
Green’s function is expressed in the Fourier series or the
Fourier integrals (Sections II and IV). The formula has simple
form and is applicable to an arbitrary number of multilayers.
The derivation of the formula is primarily based on a technique
by which a recurrence relation betweenlayers and
layers is developed. The details of the derivation are described
in Section III. The analytical Green’s function for an open

multilayered media is also derived and given in Section IV.
Green’s functions for a three-layered dielectric structure are
provided in Section V as an example of the general formula.

II. A NALYTICAL GREEN’S FUNCTIONS FOR ANARBITRARILY

MULTILAYERED MEDIA WITH SHIELDED CONDUCTOR WALLS

As illustrated in Fig. 1, the arbitrarily multilayered medium
structure consists of isotropic dielectric layers with elec-
tric parameters and perfectly conducting
shielded conductor walls. The source point and the observation
point are placed in th and th layer and denoted by
and respectively. The source is a line charge for the
2-D problem. Coordinate systems for analysis are built in each
local layer, as shown in Fig. 2(a), for convenience of analysis.
Hence, the and in such local coordinate systems should
have the values in the region and
respectively. In this paper, we define a layer as “the source
layer” when the line charge exists in that layer or as “the
nonsource layer” otherwise.

For an electrostatic problem or an analysis under the quasi-
TEM wave approximation, the Green’s function under con-
sideration, as shown in Fig. 2(a), satisfies following Laplace
equation and Poisson equation [1], [2]:

(1)

(2)

where is a Laplacian operator.
Setting the potentials on the shielded conductor walls at zero

volt, the Green’s functions inth layer can be expressed in the
form of Fourier series as

(3)

where and and are the
unknown Fourier coefficients for theth layer.

(a)

(b)

(c)

(d)

Fig. 2. Local coordinates and Green’s functions in different layers. (a) Local
coordinates forith layer. (b) Green’s function in the first layer. (c) Green’s
function in the last layer. (d) Green’s function injth layer where the line
charge source exists at point(x0; y0):

The Green’s function given in (3) at arbitrary observation
point and source point in arbitrary layer can be derived
analytically and given by following formula:

(4)

where

(5a)

(5b)

(6a)

(6b)

(6c)
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and is a generating function given by

(7)

To use this general formula, there is a simple rule by which
when we select the function with the “” sign for the
observation point and its argument of the function is
and the function for the source point is with the “ ” sign
and its argument is only ; when we only need
to exchange and and the corresponding layer number.
The signs “ ” and “ ” correspond to the relative height of
the observation point and of the source point; the higher uses
“ ,” and the lower uses “.”

The details of the derivation of this general analytical
solution will be given below.

III. D ERIVATION OF THE ANALYTICAL GREEN’S

FUNCTIONS FOR THESHIELDED MULTILAYERED MEDIA

A. Expressions for the Fourier Coefficients

Applying the boundary conditions on the upper boundary
of th layer, as shown in Fig. 2(a), to the Green’s function in
(3), we have

on th boundary (8)

From these two equations we get a relation equation between
the two sets of Fourier coefficients as follows:

or

(9)

where the coefficient matrix in above equation is given by

(10)

and the inverse matrix is

(11)

The symbols with over bar in above matrices are defined in (5).
Referring to the expression in (3), the Green’s functions in

the first and last layers, as shown in Fig. 2(b) and 2(c), are

and (12)

Therefore, we can define that

and (13)

where

and (14)

and and in (13) are two unknown coefficients for the
first and last layers, i.e., the bottom and top layers.

Substituting (13) and (14) into (9), we can get the relation
equation between the Fourier coefficients forth layer in (3)
and the unknown coefficients and for the bottom and
top layers as follows:

or (15)

where the matrices and are defined as follows:

(16a)

(16b)

The coefficients and in above equations are
introduced for convenience of the later derivation.

B. Green’s Function in the Source Layer

In the source layer, the Green’s function satisfies Poisson’s
equation (2). However, after dividing the layer into two regions
by adding a boundary at , as shown in Fig. 2(d),
the Green’s functions in the two regions then satisfy Laplace
equations and can be expanded as two Fourier series, similar
to the series shown in (3) as

(17)

where the plus and minus signs are responding to the upper
and lower regions shown in Fig. 2(d), respectively, and the
Fourier coefficients in (17) can be found from the (16) and
given by

(18)

Note that the superscripts and subscripts of the
coefficients and are omitted in above equation
for simplicity of expression.

To find the coefficients and in (18), let us consider
the boundary conditions at which are given by

(19a)

(19b)

Substituting (17) and (18) into (19) gives solutions

(20)
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where

(21)

(22)

(23)

Then we have the Green’s functions in the source layer as
follows:

(24)

C. Derivation of the Generating Function

To derive an analytical Green’s function for arbitrary num-
ber of layers, let us rewrite the in (23) for the case of

layers as

(25)

where, from (16a), we have

The subscripts in above two equations are omitted for sim-
plicity.

Letting

(26)

we have

(27)

Now, we consider the case of layers. The th
layer is added on the top of theth layer. Obviously, from
(23) we have

(28)

and from (16a)

Since

then, from (26) and (27), we get

Then, from (28), we have

(29)

Relating (25) to this equation gives a recurrence relation
between and as

(30)

Since for the structure with only one layer we have

we can then get a generating formula from the recurrent (30)
for as

(31)

Using a set of generalized symbols we can
rewrite the generating formula as shown in (7) and have

(32)

In this paper, the function defined in (7)
is called the generating function. This function is independent
on where the source layer and the observation layer, i.e.,th
and th layers exist since we have never specified these layers
in above derivation procedure.

D. Derivation of the Analytical Green’s Functions
in an Arbitrary Layer

In this section, we try to express the functions
and defined in (21) in a more sophisticated way
and relate these two functions to the generating function

In the Source Layer : We rewrite from (21)
and (16a) as follows:

(33)

(34)
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then substituting (34) into (33) gives

(35)

Referring this expression to (34) again, we discover that

(36)

Note that the superscripts in above equations are omitted for
simplicity.

On the other hand, letting

and substituting these terms into (10) gives

then

Therefore, from (23), we have

(37)

Then, obviously, we can get

(38)

Similarly, we can get as follows:

(39)

By defining two functions given in (6) for generality and
using the symmetry of the Green’s function, we can rewrite
the Green’s function in (24) as follows:

(40)

In the Nonsource Layer : Here, we can only consider
the case for the symmetry of the Green’s function. When

the Fourier coefficients in ith layer are given by

(41)

Similarly to the case we have

Fig. 3. An open multilayered medium structure.

Using the symmetry of the Green’s function and com-
bining the expression in (40), we can then unify the Green’s
functions at arbitrary observation point and source point in
arbitrary layer as the formula given in (4).

IV. A NALYTICAL GREEN’S FUNCTIONS

FOR AN OPEN MULTILAYERED MEDIA

In an open structure as illustrated in Fig. 3, the Green’s
function [as that in (3)] can be expressed in the form of Fourier
integral and given by

(42)

Similarly to the shielded structure, we have no difficulty in
finding that

(43)

as shown in (22), and the Green’s function can then be
rewritten as

(44)

where is a spectral kernel function of the Green’s
function in direction. The can be obtained
as an extension of the shielded structure by taking limits as

in (4) and given by

or

or

(45)
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Fig. 4. A three-layered dielectric structure shielded with conductor walls.

where

(46a)

(46b)

(47a)

(47b)

(47c)

Note the similarity between the formula in (4) and that in
(45). These two formulas have almost the same form except
of the difference of the summation and the integration.

To simulate the true open structure in the vertical direction
for both shielded and open structures, we can take the top
layer to have infinite thickness. Taking the thickness of the
top layer to be infinite yields two infinite hyperbolic sine or
cosine functions for the layer that occur in the nominator and
denominator of the Green’s function at the same time, hence,
cancelling the infinite exponential part of each other; therefore,
this operation does not bring any difficulty in calculation.
Similarly, the bottom layer can be also taken to be infinite, but
at least one of the top or the bottom layers must not be infinite
because the potential in the 2-D problem needs a reference
potential or a ground at a finite distance.

V. GREEN’S FUNCTIONS FOR A

THREE-LAYERED DIELECTRIC STRUCTURE

For a three-layered dielectric structure, as shown in Fig. 4,
here we derive its Green’s functions as an example of the
application of the general analytical formula in (4).

Letting into (4)–(7), we have the generating formula
as

(48)

and then

(49)

Placing the observation point and source point into each layer
alternately gives

(50a)

(50b)

(51a)

(51b)

(52a)

(52b)

and the Green’s functions for each layer are then given as

(53a)

(53b)

(53c)

(54a)

(54b)

.
(55)

The remaining Green’s functions can be found from the
symmetry of the Green’s function and given by

(56a)

(56b)

(56c)

These Green’s functions for a three-layered dielectric struc-
ture are the same as those functions available in many pub-
lished papers and books, for example, in [5], [13], and [14].
This example also provides a direct verification of the correct-
ness of the general formulas.
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VI. CONCLUSION

We have derived the general analytical solutions of the
static Green’s functions for shielded and open arbitrarily
multilayered medium structures. The Green’s functions for
a three-layered dielectric structure are also provided as an
example of the application of the general expressions. We
can say that these general analytical formulas will end the
history of the exhaustive derivation of the Green’s function
for the multilayered medium structures. One obvious merit
of these formulas is that they are given finally in analytical
expressions and the expressions are true for arbitrary number
of layers. Being analytical and applicable to arbitrary number
of layers will be very helpful to develop efficient calculation
techniques of the Green’s function based on those expressions,
for example, to extract the singular part from the Green’s
function, to introduce an approximate formula that may be
more suitable to the numerical computation, and to develop
a general computation program for an arbitrarily multilayered
medium structure. On the other hand, applying the Green’s
functions to the -BEM will give an effective technique for
the analysis of the multilayered medium structures, which
may include arbitrary cross-sectional dielectric substrates and
strip conductors [5]. Furthermore, using the concept of the
complex image charges will greatly improve the convergence
of the Green’s functions expressed in the Fourier integral [15],
[16]. These analytical formulas are able to be extended to the
solutions for three-dimensional static Green’s functions, since
the derivation procedure after expanding the Green’s function
in a 2-D plane is completely the same as that given in this
paper. We believe that these general analytical formulas for
Green’s function presented in this paper will be a key to open
the door of the analysis of the arbitrarily multilayered medium
structures.
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